Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus
نویسندگان
چکیده
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
منابع مشابه
Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source.
After the completion of the genomic sequencing of model organisms, numerous post-genomic studies, integrating transcriptome and metabolome data, are aimed at developing a more complete understanding of cell physiology. Here, we measure in vivo metabolic fluxes by steady state labeling, and in parallel, the activity of enzymes in central metabolism in cultured developing embryos of Brassica napu...
متن کاملLarge scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape.
Seed filling is a dynamic, temporally regulated phase of seed development that determines the composition of storage reserves in mature seeds. Although the metabolic pathways responsible for storage reserve synthesis such as carbohydrates, oils, and proteins are known, little is known about their regulation. Protein phosphorylation is a ubiquitous form of regulation that influences many aspects...
متن کاملIntegration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis
The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds...
متن کاملIdentifying Conserved and Novel MicroRNAs in Developing Seeds of Brassica napus Using Deep Sequencing
MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the...
متن کاملComparing cytogenetic effects of extremely low frequency electromagnetic fields in Brassica napus L and Zea mays L
Many biological effects of exposure to extremely low frequency electromagnetic fields(ELF-EMFs) have been documented, but little work carried out on plants. A meiotic study wasperformed on Brassica napus L as C3 plant and Zea mays L as a C4 plant exposed to electromagneticfields. Our investigations were focused on plants grown from wet pretreated seeds with3 and 10 mT for a 4 h exposure time an...
متن کامل